

WJEC (Wales) Chemistry A-level

SP 3.8 - Determination of an Equilibrium Constant

Methods and images taken from the WJEC practical handbook

This work by PMT Education is licensed under CC BY-NC-ND 4.0

SP 3.8 - Determination of an Equilibrium Constant

Aim

To determine the equilibrium constant for the reaction of ethanol with ethanoic acid.

Apparatus and Chemicals

- Communal burette of glacial CH₃COOH (ethanoic acid)
- Communal burette of CH₃CH₂OH (ethanol)
- Communal burette of deionised H₂O
- Communal burette of 1.0 mol dm⁻³ of HCl solution
- 2 x 100 cm³ conical flask with stopper
- 2 x 250 cm³ conical flask
- 50 cm³ burette and funnel
- Burette clamp and stand
- 1.0 cm³ measuring cylinder (or 1 cm³ pipette with filler)
- 100 cm³ measuring cylinder
- Deionised water in wash bottle
- Standard solution of 0.1 mol dm⁻³ sodium hydroxide solution
- Phenolphthalein

Safety Considerations

- ★ 1.0 mol dm⁻³ HCl solution irritant
- ★ Glacial CH₃COOH irritant
- ★ CH₃CH₂OH flammable
- ★ 0.1 mol dm⁻³ NaOH solution irritant

Method

Part 1

- 1. Prepare the **control flask** and **reaction flask** by mixing the appropriate chemicals in the quantities listed in the table below:
- 2. Stopper, label and shake both flasks and leave them for at least one week.
- 3. Using the densities and volumes given for each reagent, calculate the initial amount of CH₃CH₂OH, CH₃COOH and H₂O in moles. You should assume that 2.0 cm³ of the 1.0 mol dm⁻³ HCl solution adds an extra 2.0 cm³ of H₂O to the mixture.

All volumes in cm3

		The control	The mixture
Reagent	Density/g cm ⁻³		
glacial ethanoic acid	1.05	0.0	6.0
ethanol	0.79	0.0	6.0
water	1.00	18.0	6.0
1 mol dm ⁻³ hydrochloric acid	1.00	2.0	2.0
Total volume		20.0	20.0

Part 2

- 1. Empty the contents of the control flask mixture into a 250 cm³ conical flask.
- 2. Add 100 cm³ of deionised H₂O and 2 drops of phenolphthalein to the flask.
- 3. **Titrate** the mixture against the standard solution of NaOH. Record the results of this titration.
- 4. Transfer 1.0 cm³ of the reaction mixture to a 250 cm³ conical flask.
- 5. Add 100 cm³ of deionised water and 2 drops of phenolphthalein to the flask.
- 6. Swirl the flask and titrate the mixture against the standard solution of sodium hydroxide solution as quickly as possible.
- 7. Repeat steps 4 to 6 with further 1.0 cm³ samples of the equilibrium mixture until you have three concordant results.
- 8. Use the results of the titrations to calculate the **equilibrium constant** of the reaction.

